

Synergy of Diamond Turning & Computer Controlled Polishing In the Production of Multi-Mirror Precision Beryllium Systems

Presented at

Mirror Tech Days, Space & Missile Defense Conference
NASA Marshall Space Flight Center

Dan Barber

LightWorks Optics, Inc. 14242 Chambers Road Tustin, California 92780 www.lightworksoptics.com

SBIR Description

LCKV Sensor Assembly 100% Beryllium Manufacturability Improvement Project

- Optimize beryllium kill vehicle sensor design for low cost manufacturing processes by minimizing
 - end-to-end cycle times
 - processing costs
 - assembly/alignment times
- Beryllium offers many performance advantages and is an excellent choice for high-performance sensor designs

MDA Phase I SBIR
MDA Contract #HA0006-05-C-7175
COR: Charles A. Pagel

Problem Statement

Existing Production Processes Are High Cost for Intended Application

LCKV Multi-mirror Sensor Design

- High performance optical surfaces
- Alignment to extremely tight tolerances
 - Centration errors < 6 µm (typical)
 - Tilt errors < 50 μRadians (typical)

Current Production Process

- Precision optical surfaces
 - Conventional polishing techniques
 - Optical surfaces loosely controlled relative to mechanical interfaces
- Precision alignments
 - Accomplished manually after optical surface is complete

Precision Machining & Diamond Turning As Precision Alignment Methodology

LightWorks Expertise

- Precision system alignment
- Utilizing precision diamond turned interfaces
 - Multi-mirror reflective systems in visible & IR
 - Multi-element refractive systems in visible & IR
- Achieving typical alignment tolerances
 - Centration Error < 2.5 μm
 - Tilt Error < 50 μRadians
 - No manual alignment required for "Snap Together" systems

Diamond Turning & Alignment Capabilities

Missile Launch Detection Optics

- Infrared Refractive materials
 - Three aspheric surfaces
- Aluminum cells
- Diamond turned assemblies
 - Element-to-element centration accuracy
 2.5µm
 - Element-to element tilt accuracy
 100 µRadians
- Production program
 - 90 units in production
 - Recently awarded contract for additional 230 units

Diamond Turning & Alignment Capabilities

Airborne Observatory Telescope

- 14 inch all-aluminum reflective telescope
- Diamond turned & post polished
- Multi-spectral VIS / MWIR / LWIR
- 2 units delivered

Computer Controlled Polishing Capabilities

Zeeko/LOH Aspheric Polishing Machine

- 7-axis computer control
- True, free-form polishing

Capabilities

- On-axis spheres & aspheres
- Off-axis aspheres (on the machine) axis)
- On-axis and off-axis toroids
- Free form optical surfaces
 - Conformal windows
 - Corrector plates

Wide range of substrate materials

Glass Mirror Reflective TMA

Glass & Invar TMA

- Optical subsystem of a government funded research project
- Glass mirrors polished relative to alignment reference surfaces

TMA Mirror Polish Results

Primary, 3.25 inch aperture, off-axis parabola

- All Mirrors Polished directly from generated blanks
- Surface figure error < $\lambda/8$ P-V @ 632.8nm
- Surface slope error < 0.01 waves/mm rms
- Polished relative to alignment reference features

Polish Process Video

Computer-Controlled Polishing at LightWorks >> Looking Forward <<

Today

Current CCP capacity is 200mm

October 2005

LightWorks will take delivery of a 400mm capacity machine

April 2006

LightWorks will take delivery of a 1.0 meter capacity machine

We continue to

- ✓ Develop CCP process controls & feedback methodologies
- ✓ Improve CCP alignment maintenance processes & controls
- ✓ Improve methods for referencing optical surfaces to mechanical interfaces

Combining the Two Technologies

GOAL

Exploit the synergy of diamond turning & computer controlled polishing capability under one roof.

SBIR - Combining the Two Technologies

Single Point Diamond Turning

- Deterministic figuring of optical surfaces & hardware interfaces relative to fixed machine reference points
- Alignment accuracies only limited by runout of translation airslides and airbearing spindle
- Typical accuracies
 - Centration error < 2.5 μm
 - Tilt error < 50 μRadians

7-axis computer controlled polishing machine

- Single point computer controlled polishing
- Deterministic polishing of optical surfaces relative to fixed machine reference points
- Typical accuracies
 - Centration error < 2.5 μm
 - Tilt error < 100 μRadians

MDA SBIR Roadmap

Purpose

Design & Fabricate On-Axis Nickel-Plated Be Telescope

- Using combined DT & CCP technologies to achieve
 - High performance optical system
 - Requiring no manual alignment

Phase I – Complete Sept, 2005

- Design hardware & tolerances
 - Configure hardware & interfaces to be consistent with, & optimized for, the two manufacturing processes
 - Develop tolerance budgets for each production stage
 - Plan prototype manufacturing process

Phase II

- Produce full scale prototype
 - Precision alignment features integral to hardware
 - Precision optical profiles true to alignment features
 - Alignment-free assembly process

Phase III

- Commercialization plan
- "Self-Aligning" Aspheres
 - $-\lambda/10$ P-V Aspheric components
 - With integral alignment reference surfaces
 - Centration to < 2.5 um
 - Tilt < 50 μRadians

